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Abstract 
Ethanol produced from pretreatment and microbial fermentation of biomass has great 
potential to become a sustainable transportation fuel in the near future. First generation 
biofuel focus on starch (from grain) fermentation, but in the present study that is 
regarded as a too important food source. In recent years 2.nd generation technologies are 
developed utilizing bulk residues like wheat straw, woody materials, and corn stover. 
However, there is a need for integrating the biomass starting point into the energy 
manufacturing steps to secure that bioenergy is produced from local adapted raw 
materials with limited use of non-renewable fossil fuels.  

Produced crops can be transformed into a number of useful products using the concept of 
biorefining, where no waste streams are produced. An advantage of intercropping is that 
the intercrop components composition can be designed to produce a medium (for 
microbial fermentation) containing all essential nutrients. Thereby addition of e.g. urea 
and other fermentation nutrients produced from fossil fuels can be avoided.  

Intercropping, defined as the growing of two or more species simultaneously on the same 
area of land, is a cropping strategy based on the manipulation of plant interactions in 
time and space to maximize growth and productivity. Cereal-legume intercropping data 
from field trials show the possibility to improve the use of nitrogen resources, because 
the non fixing species (e.g. wheat) efficiently exploits soil mineral N sources while at the 
same time atmospheric N from the N2-fixing species (e.g. pea) enter the cropping system 
reducing the need for N fertilizer application. Nitrogen fertilization is responsible for 
more than 85 % of the greenhouse gas emissions from wheat grain production in 
Denmark. Increase of fertilizer N supply promotes the growth of wheat and results in a 
decreased pea N accumulation and a different proportion of intercrop components. 
Intercropping introduce a dynamic change of plant species interactions as a response to 
the actual growing conditions observed which is not achieved with sole cropping of one 
species/cultivar. It is also concluded that when growing pea as a sole cropping available 
soil mineral N reduce N2 fixation and the full potential of symbiotic nitrogen fixation is 
not exploited which is regarded as an overall inefficient use of N sources.  

Using clover-grass intercropping raw materials, as another potential species combination 
with equivalent field responses to e.g. pea-wheat intercropping, conversion yields 
obtained in laboratory experiments show that wet oxidation is an efficient method for 
fractionating clover, grass, and clover-grass mixtures into a convertible solid cellulose 
fraction and a soluble hemicellulose fraction. The highest yield of fermentable sugars 
after enzymatic hydrolysis is achieved in clover-grass (mixed 1:1) pretreated at 195ºC 
for 10 minutes using 12 bar oxygen. The optimum pretreatment conditions for clover, 
grass, and clover-grass mixtures is not significantly different from that of wheat, which 
indicates that wheat straw and clover-grass (from intercropping) could be pretreated in 
one step. The produced sugars were converted into ethanol by Mucor indicus giving 
good ethanol yields YE/TS,Aerobic = 0.37 and YE/TS,oxygen limited = 0.41. It is also concluded 
that fructans from unheated clover-grass juice can be co-converted into ethanol by 
natural enzymes and yeast increasing the ethanol production significantly. 
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Using field data and biomass conversion yields obtained in laboratory experiments a 
decentralized biorefinery concept for co-production of bioethanol and biogas is described 
with strong emphasis on sustainability, localness and recycling principles.  

1 Introduction  
Bioethanol produced from pretreatment and microbial fermentation of biomass has great 
potential to become a sustainable transportation fuel in the near future (Thomsen et al., 
2003). Brazil and the United States are the largest producers of ethanol for transport, 
accounting for about 90 percent of world production. Both countries currently produce 
about 16 billion liters per year with a displacement of 40% of gasoline use in Brazil but 
only 3% in the United States with sugarcane (Saccharum L.) and corn (Zea mays L.) as 
the primary feedstock, respectively (Hazell and Pachauri, 2006). In 2005 Europe 
produced only about 2.6% of the world bioethanol production, but with a bioethanol 
sector growing with 70.5% between 2004 and 2005 primarily in Germany and Spain but 
with new producer countries like Hungary and Lithuania coming up (Eurobserver, 2006). 

Recently a 10% binding minimum target was decided to be achieved by all EU Member 
States for the share of biofuels in overall EU transport petrol and diesel consumption by 
2020 (EU 2007). In the U.S. President George W. Bush signed in to law the Energy 
Policy Act of 2005 creating a national renewable fuel standard (RFS) boosting the 
bioethanol sector (RFA, 2006). The character of such political activities is appropriate 
subject to production of biomass being sustainable - in the present study defined as the 
ability of a farm to produce indefinitely, without causing irreversible damage to 
ecosystem health.  

Intercropping, defined as the growing of two or more species simultaneously on the same 
area of land (Willey, 1979), is an old traditional practice still widespread in the tropics 
and common in developed countries before the ‘fossilization’ of agriculture (Crews and 
Peoples, 2004). This cropping strategy is based on the manipulation of plant interactions 
in time and space to maximize growth and productivity (Hauggaard-Nielsen et al., 2006). 
Cereal-legume intercropping data from field trials show the possibility to increase input 
of leguminous symbiotic nitrogen (N) fixation into cropping systems reducing the need 
for fertilizer N applications (Jensen, 1996). Moreover, less need for pesticides are 
obtained due to improved competition towards weeds (Hauggaard-Nielsen et al., 2001; 
Liebman and Dyck, 1993) and less general damages on intercropped species by pest and 
disease organisms (Trenbath, 1993). Intercropping is a more adaptive management 
practice as compared to the present arable crop rotations consisting mainly of sole crops 
(monocrops, pure stands).  

Beside bioethanol produced from sugar cane primarily in Brazil (producing more than 
twice the amount of the second largest producer India) the rest of the world production 
originates from starch fermentation (cereal grains), first generation technology. 
However, that is regarded as a too important food source in the present study. The 
emphasis is towards a food and energy approach using second generation technologies 
developed in recent years and cropping systems where the grain is utilized for food and 
feed and the remaining residues (straw, undersown grasses, catch crops etc.) is utilized 
for bioethanol production.  

Apart from cellulose (40%), hemicellulose is a main sugar component (25-35%) in the 
lignocellulosic materials used for 2. generation bioethanol. However, these 
carbohydrates are closely bound together with lignin in the plant cell wall. Pre-treatment 
of the lignocellulose is necessary in order to open the structure and make carbohydrates 
susceptible to enzymatic hydrolysis and bioethanol fermentation. Aqueous pre-treatment 
at elevated temperature (such as wet-oxidation and steam explosion) result in an 
insoluble cellulose rich fraction (C-6 sugars) and a soluble fraction containing 
hemicellulose (C-5 sugars) and degradation products. (Bjerre et al. 1996; Tengborg et al. 
2001). After pretreatment sugar polymers can be converted into fermentable sugars by 
enzymatic hydrolysis. An advantage of intercropping is that the intercrop components 
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composition can be designed to produce a medium (for microbial fermentation) 
containing all essential nutrients. Thereby addition of e.g. urea and other fermentation 
nutrients produced from fossil fuels can be avoided.  

Biorefineries represent a technology for utilization of renewable resources and natural 
compounds in form of crops such as ryegrass, alfalfa, clover, and immature cereals from 
extensive land cultivation and vegetable residues e.g. different kinds of straw and fibres 
(maize, grain, rape, hemp, flax, etc.), potato and vegetable industry wastes and molasses 
where all parts of the biomass is transformed into useful products, and no waste streams 
are produced (Thomsen et al, 2005). In the biorefinery concept crops are converted by 
means of mechanical and biotechnological methods into useful materials such as food 
and feed products and additives, as well as materials, organic chemical compounds, and 
bioenergy. Biotechnology offers several advantages compared to chemical synthesis e.g. 
high product specificity, low production temperature, and low energy consumption. As a 
result fermentation is becoming increasingly important in the production of commodity 
chemicals such as enzymes, antibiotics, biodegradable plastics, organic acids, alcohols, 
and amino acids.   

Using field data and biomass conversion yields obtained in laboratory experiments a 
decentralized biorefinery concept for co-production of bioethanol and biogas is described 
with strong emphasis on sustainability, localness and recycling principles. 

2 Materials and methods  
The intercrop experiment was carried out on a sandy loam on the Experimental Farm of 
The Royal Veterinary and Agricultural University, Denmark (55o40’N, 12o18’E) in 
2002. In spring field pea (Pisium sativum L.) and spring wheat (Triticum sativum L.) 
were established as 100% sole crops (SC) and in a 50% pea + 50% wheat intercrop (IC) 
according to recommended sole crop sowing densities of 90 pea plants and 400 wheat 
plants m-2. Spring wheat SC and pea-wheat IC were grown at three levels of N supply in 
the form of urea, i.e. 0 (N0), 4 (N4) and 8 (N8) g N m-2 whereas pea SC was only grown 
at N0 and N4 due to the ability of pea to fix N2 from the air. Microplots were placed in 
all fertilized plots and labelled with 15N-urea and used for calculating the proportion of 
plant N derived from fixation (%Ndfa), fertilizer (%Ndff) and soil (%Ndfs) according to 
standard procedures (Chalk, 1998). For further information see Ghaley et al. (2005). 

The clover-grass mixture (1:1) were cultivated in the experimental fields of Risø 
National Laboratory, Denmark. The material was harvested and for samples of pure 
clover and grass - and 1:3 clover-grass mixture - the material was separated by hand. The 
samples were dried at 50ºC to constant weight and milled to a size of less than 2 mm 
prior to pretreatment and further analysis. Fresh clover-grass juice was produced by 
pressing of newly harvested clover-grass in a kitchen fruit-press. 

Wet oxidations were performed in a loop autoclave constructed at Risø National 
Laboratory using 6% dry matter (DM) (Bjerre et al., 1996). After the wet oxidation the 
pretreated material was separated by filtration into a solid filter cake (containing fibers 
and lignin) and a liquid fraction (containing soluble sugars and various degradation 
products). Pretreated liquids were stored at -20ºC until further analysis and use, and the 
filter cakes were dried and kept in a climate cabinet at 20ºC and 65% relative humidity. 

To quantify the sugar polymers in the raw material and the solid fraction after wet 
oxidation a two step acid hydrolysis was performed. The first hydrolysis step was 
performed at 30ºC for 60 min. with 1.5 ml of  H2SO4 (72%) for 0.16 g DM. Then 42 ml 
water was added and the second step was performed at 121ºC for 60 min. The 
hydrolyzate was filtered and the dried filter cake subtracted for ash content is reported as 
Klason lignin. In order to quantify the sugar content in the liquid fraction a weak 
hydrolysis was performed at 121 ºC for 10 min using 4% H2SO4, in duplicate. The 
amounts of released sugar monomers in the hydrolyzate as well as concentrations of 
ethanol, malic acid, succinic acid, glycolic acid, formic acid and acetic acid were 
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determined by HPLC (Shimadzu) using a Rezex ROA column (Phenomenex) at 63ºC 
and 4 mM H2SO4 as eluent at a flow rate of 0.6 ml/min. A refractive index detector 
(Shimadzu Corp., Kyoto, Japan) was used.  

The enzymatic hydrolysis was carried out at 50ºC, pH 4.8 and with 2% DM and an 
enzyme load of 30 FPU/g DM. The enzyme used was Cellubrix L, (Novozymes, 
Denmark) and the amounts of hydrolyzed sugars were determined by HPLC as described 
above. The experiments were carried out in triplicates for each solid pretreatment 
fraction.  

Shake-flask fermentations of clover-grass with Mucor indicus were run in 250-ml 
erlenmeyer flasks containing 100 ml of clover-grass enriched with glucose to obtain a 
total of 16 g glucose/litre. One ml of a spore suspension in sterile water was inoculated 
in the medium and the flasks were incubated at 30oC with shaking (130 rpm). Oxygen-
limited fermentations were run in 32-ml flasks containing 30 ml of medium and 
equipped with cannulas for sampling and CO2 removal. Fermentation of fresh clover-
grass juice was also performed in in 250-ml erlenmeyer flasks containing 100 ml of 
medium. 0.5 g of dry commercial yeast (Malteserkors tørgær, De Danske Spritfabrikker 
A/S, Denmark) was added to the flasks together with the clover-grass, no nutrients were 
added. Glucose, xylose, and ethanol in fermentation broths were analysed by HPLC as 
described above. Flasks were incubated at 30oC with shaking (130 rpm). 

3 Results and discussions 
Biomass cultivation 
Wheat SC significantly increased dry matter (DM) production at increased rates of 
fertilizer nitrogen whereas pea-wheat IC and pea SC did not respond to fertilizer N 
(Figure 1). In N0 plots, pea SC and the pea-wheat IC produced more than twice the 
amount of DM as compared to wheat SC. With N4, no significant difference was 
observed between wheat and pea SC and total intercrop DM yield. However, doubling 
the fertilizer N rate (N8), sole cropped wheat accumulated significantly higher amounts 
of DM. In general, growing N2 fixing species like pea as sole crops is considered an 
inefficient way of utilizing soil N resources, as the legume is able to fix N2 and may only 
need a small amount of soil inorganic N in the establishment phase to overcome any N-
deficiency after seed-N sources have been exhausted.  

Land Equivalent Ratio (LER) can be used as a measure of the crop stands ability to 
capture environmental resources for growth (Mead and Willey, 1980). When using the 
total crop dry matter production in the calculation (Figure 1) the highest LER value was 
1.26 in IC N0 indicating that 26% more land would have to be used when sole cropping 
in order to obtain the same yield, if each sole crop was allocated to 50% of land. Thus, in 
a future with availability of cultivated land as a potential limiting resource such 
increasing efficiencies in local resource use are of high importance. Increasing 
fertilization decrease LER to 0.97 (N4) and down to 0.85 (N8) indicating more efficient 
utilizations of environmental resources for growth by sole crops than by intercrops. 
Improving N supply by fertilization stimulates the wheat component, which thus 
suppresses the growth of the legume and indirectly the interspecific complementarity.  
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Fertilizer and cropping strategy
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Figure 1. Average straw, grain and weed aboveground dry matter (DM) production in 
sole crops (SC) and intercrops (IC) of pea and wheat without (0) and with 4 and 8 g N m-

2 application, respectively. Values are the mean (n=3) ± S.E. From Ghaley et al. 2005 

Improved competition with weeds has been emphasised as one of the benefits of 
intercrops (Liebman and Dyck, 1993) because of increased interspecific competition as 
compared to sole cropping (Willey, 1979) assumed to result in a more dynamic crop 
response to a variety of growth conditions including temporal and spatial heterogeneity 
in growth of weeds throughout a growing season. When including weeds in the total DM 
production the variability comparing treatments (Figure 1) is rather limited with a 
coefficient of variation (CV) averaging 15% - also when taking into account the general 
availabilities included in every field study. Thus, for future cropping systems reducing 
external inputs any part of the soil surface that is not occupied by the crop plants is 
potentially subject to invasion by weedy species. When combining appropriate crop 
species within an intercrop instead of sole crops increased efficiency in utilising 
environmental sources for plant growth can be achieved improving the competitive 
ability towards weeds using soil N and other important growth resources for crop dry 
matter production instead of weed biomass. 

Looking at the entire ethanol production cycle, biomass production and thereby manage-
ment is a very prominent source of GHG emissions independent of whether it is first or 
second generation technologies with 60-70 % of total LC emissions for wheat grain 
ethanol and 30-45 % for wheat straw based ethanol when utilizing the Danish IBUS 
concept (Maarschalkerweerd, 2006). Nitrogen fertilization is responsible for the main 
part of GHG emissions from wheat grain production in Denmark primarily caused by 
energy intensive production of N-fertilisers and soil emissions of N2O (LCA Food 2006). 

When intercropped, the N derived from fertilizer in intercropped wheat was significantly 
higher (10 - 21%) than in intercropped pea (1-3%). In SCs with fertilizer N, soil N 
accounted for 62-78% of the total N in wheat and 17% in pea. With N0, the total amount 
of soil N accumulation was significantly higher in the pea sole crop (7.9 g N m–2) 
compared to wheat (2.9 g N m–2) and the combined intercrop (6.7 g N m–2) (Figure 2). 
However, with fertilizer N, sole and intercropped wheat accumulated a greater amount of 
soil N compared to pea. As the fertilizer N input increase the percentage of N derived 
from N2-fixation in pea both when sole cropped and intercropped peaked at N4 (90%) 
followed by a decrease with N8 (79%). The greatest amount of N2-fixation was achieved 
in pea SC (10.3 g N m–2) with N4 followed by the pea IC and pea SC with N0. The 
amount of fixed N2 by pea IC was similar to pea SC when no N was applied. When 
increasing fertilizer N inputs, there was proportionate decrease in the amount of fixed N2 
in the intercrop due to the reduction of the pea intercrop proportion. 
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When developing sustainable plant production systems with a limited use of external 
inputs the present pea-wheat intercrop study show how crop interactions change 
dynamically over time, due to the species ability to exploit different resources and 
thereby secure capture of available plant growth resources. Cereals like wheat is strong 
competitors towards soil N. Pea-wheat IC without or with a low amount of fertilizer N 
supply offers an opportunity to maximise total DM production and on the same time 
increase N2-fixation without compromising the yield levels. When enhancing fertilizer N 
LER decreased because the complementarity between the two species was decreased 
with wheat recovering up to 90% of the total intercrop fertilizer N acquisition and 
decreased the proportion of pea in the intercrop. A high degree of complementarity are 
important for resilient cropping strategies with the capacity for self-regulation to recover 
from biotic and abiotic stress when reducing external inputs and thereby energy use with 
less fertiliser and pesticide inputs.  
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Figure 2. Amount of nitrogen (N) derived from soil, fertilizer and air in pea and wheat 
when grown as sole crops (SC) and as pea-wheat intercrop (IC) with 0 (N0), 4 (N4) and 8 
(N8) g N m-2 application. Values are the mean (n=3) + S.E. From Ghaley et al. 2005 

The growing demand for bioenergy crops may create further competition for land and 
water and could result in additional negative environmental pressures from cultivating 
bioenergy crops (EEA, 2006). The environmental impact of bioenergy production 
depends to a large extent on the selection of areas that are used for bioenergy production, 
the crops cultivated and the farming practice. There is a need for integrating the biomass 
starting point into the energy manufacturing steps to secure that bioenergy is produced 
from local adapted raw materials with limited use of non-renewable fossil fuels. 
Chemical quality for conversion to secure efficiency in bioethanol production needs to 
go hand-in-hand with the development of ecologically benign farming systems in order 
to fulfil the aim of sustainable bioethanol production.  

Many other species than wheat and pea are potential intercrop components, each suiting 
different purposes and cropping conditions (Willey, 1979). Reviewing published 
intercropping studies Connolly et al. (2001) listed crops includes as intercrop component 
with the most common species first: corn (Zea mays), cowpea (Vigna unguiculate L.), 
groundnut (Arachis hypgaea), wheat, millet (Pennisetum glaucum), clover cultivars 
(Trifolium spp.), beans (Phaseolus vulgaris), pigeonpea (Cajanus cajan), other beans 
(Vicia faba), barley (Hordeum vulgare) and pea, with 80% of published intercrop 
research conducted in developing counties in Africa and Asia. However, increasing 
demand for bioenergy in Europe and United States may create new uses for e.g. grass 
cuttings on marginal land, new bioenergy cropping systems and perennials might also 
add diversity and require less pesticide or fertiliser input than in current intensive 
agricultural systems, like shown for the present pea-wheat intercropping example.  

Biomass conversion  
At present cereal straw and corn stover is the typical biomass to be used in production of 
2. generation bioethanol. Pre-treatment, hydrolysis, and ethanol fermentation of these 
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materials are well studied and have been optimised in both laboratory scale (Bjerre et al. 
1994, Scmidt & Thomsen 1998) and pilot scale (Thomsen et al., 2005). However, 
production of bio-ethanol in a larger scale may also require the use of alternative forms 
of biomasses e.g. pea, grass, or clover as described above.  

Since clover and grass are rich in carbohydrates, mainly cellulose and hemicelluloses, 
they can be considered as substrates for bioethanol production. Clover grass pastures can 
be harvested several times a year and the green biomass can be collected and processed 
to bioethanol. Furthermore, clover grass is suitable for intercropping with wheat (just as 
pea in the example given above) (Thorsted et al. 2006). An interesting feature of clover 
grass mixtures is their high mineral, especially nitrogen, content, which is very useful in 
down-stream processing, since the utilisation of mineral nutrients in the fermentation 
step can be reduced or even avoided.  

In this study clover, grass, and a mixture of clover-grass were pretreated by wet 
oxidation in order to examine the suitability of clover-grass to be used in bioethanol 
production alone or in combination with e.g. wheat straw. Table 1 shows the 
composition of the materials compared to wheat straw. 

Table 1 Composition of raw materials. 

Raw material 
Cellulose 

(g/100 g DM) 

Hemicellulose 

(g/100 g DM) 

Lignin 

(g/100 g DM) 

Wheat straw* 33.9 23.0 19.1 

Clover 15.6 10.5 14.4 

Grass 23.9 17.5 12.8 
*Thomsen et al., 2006 

Pretreatment of clover, grass and clover-grass mixed 1:1 and 1:3 were performed at 
195ºC for 10 minutes using 12 bar of oxygen pressure and 2 g/l of Na2CO3, which have 
been shown to give the optimal pre-treatment of wheat straw. Furthermore, pre-treatment 
of the 1:1 mixture of clover-grass where studied at 175ºC and 185ºC with and without 
addition of Na2CO3, and with high (12 bar) and low (3 bar) oxygen pressure. Figure 3 
shows the sugar and lignin content of the fibre-fraction after pre-treatment and figure 4 
shows the composition of the liquid fraction. The pretreated grass fibres have higher 
glucan content than clover (Figure 3), and the grass-liquid also has a higher content of 
hemicellulose (Figure 4), which is due to the different in the two materials (Table 1). 
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Figure 3 Glucan, hemicellulose, and lignin content in the fiber fraction of wet oxidised 
clover (Cl), grass (G), and clover-grass mixtures (Cl-G). 

In turn clover has a higher content of lignin. The hemicellulose content of the fibres is 
dependent on the pre-treatment temperature, at higher temperatures more hemicellulose 
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is extracted from the fibres (Figure 3), giving a higher hemicellulose concentration in the 
pretreatment liquids (Figure 4). Also a high oxygen pressure seems to have an effect on 
hemicellulose extraction, and the three experiment with clover-grass (1:1) performed at 
195ºC indicates that the extraction is highest when no Na2CO3 is added. Clover and grass 
hemicellulose consist significant amount of both xylose and arabinose (Figure 4) in 
contrast to wheat straw hemicellulose with is 86 % xylose (Gong et al., 1981). The 
arabinose concentration is highest in liquid pretreated at low temperature whereas the 
opposite tendency is observed for xylose. This could indicate that arabinose is more 
susceptible to thermal degradation than xylose. 
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Figure 4 Glucose, xylose, arabinose and total hemicellulose content in the liquid 
fractions of wet oxidised clover (Cl), grass (G), and clover-grass mixtures (Cl-G). 

Figure 5 shows the results of the enzymatic hydrolysis of the pretreated fibers. When 
pretreated at identical conditions (195ºC, 10 min, 12 bar, 2 g/l Na2CO3) grass gives a 
higher sugar yield than clover, which could be due to the higher lignin content in clover, 
since lignin acts as the glue that binds the sugar polymers together in the cell wall 
materials (kilde). At 175ºC only approximately 40% of the glucose and 30% of the 
xylose in the grass-clover mixture can be converted to fermentable sugars. At higher 
temperatures the convertibility of the fibers are significantly improved, and the optimal 
treatment of the clover-grass is found at 195ºC using high oxygen pressure and no 
addition of Na2CO3 where the glucose yield is 94 % and the xylose yield is 66% - 
Arabinose?   
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Figure 5. Glucose and xylose yield in enzymatic hydrolysis of fibers from wet oxidation 
of clover (Cl), grass (G), and clover-grass mixtures (Cl-G). 

Risø-R-1608(EN) 101



The results of this preliminary study shows that the optimum pretreatment conditions for 
clover, grass, and clover-grass mixtures is not significantly different from that of wheat 
straw (195ºC, 10 min, 12 bar, 2 g/l Na2CO3), even though the composition of the raw 
material is different (Table 1). Both clover, grass, and clover-grass mixtures give glucose 
yields close to and above 80% when pretreated at these conditions, which indicates that 
wheat straw and clover-grass could be pretreated in one step if it was cultivated together 
in order to achieve the benefits described in the previous section about intercropping. 
However the effect of the Na2CO3 catalyst should be examined in experiments with 
straw and clover-grass pretreated together in order to decide if the catalyst should be 
added, since in the clover-grass mixture the highest yield is achieved without addition of 
the catalyst. 

When pretreating biomass at these high temperatures some thermal degradation of sugar 
and lignin components is inevitable, resulting in formation of fermentation inhibitors. 
The fermentability of the clover-grass liquid fraction produced at optimal conditions 
(195ºC, 10 min, 12 bar) in this study was examined by ethanol fermentation with the 
filamentous fungus Mucor indicus (Figure 6). The avantage of using Mucor indicus, 
instead of the traditional ethanol producer Bakers yeast (Saccharomyces cerevisiae), is 
that it is capable of utilising the hemicellulose sugars.  
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Figure 6. Ethanol formation and free sugar consumption during aerobic and oxygen-
limited fermentation of a glucose enriched clover-grass hydrolysate by M. indicus. 

Mucor indicus was successfully adapted to the clover-grass hydrolysat, showing that the 
inhibitor level in the hydrolysates was acceptable. Ethanol was the main product formed 
during fermentation, but a considerable formation of cell biomass was also detected, 
especially under aerobic conditions. Good ethanol yields were obtained (calculated from 
total sugar consumed): YE/TS,Aerobic = 0.37 and YE/TS,oxygen limited = 0.41. 
Glucose was completely consumed in both experiments. Xylose consumption started 
only when most of the glucose was consumed. 80% of the free xylose was consumed 
under aerobic conditions. 

Biorefinery concepts 
In the experiments described in the previous section clover-grass was dried before pre-
treatment as it would be the case if clover-grass were undersown in a wheat field and 
harvested and dried on the field together with the wheat straw. But when heating the 
material to 195ºC valuable components of the clover-grass such as enzymes and free 
sugars are lost. Figure 7 shows the result of yeast fermentation of fresh (non-heat-
sterilised) clover-grass juice. After 24 hours of fermentation all glucose present (12 g/l) 
in the juice is consumed, and approximately 15 g/l of ethanol is produced. From 12 g/l 
glucose only approx. 6 g/l of ethanol can be produced, which shows that other sugars in 
the juice is utilised for ethanol production.  

Grass and clover contains significant amount of fructans; approx. 166 g/kg DM and 111 
g/kg DM respectively (Thomsen et al., 2006). Fructans are polymeric carbohydrates 
consisting of variable numbers of fructose molecules with terminal sucrose. Fructans can 
be decomposed to free carbohydrates by enzymes in the crops that are activated after 
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harvesting and pressing (Hirst, 1957). Plant fructan hydrolases are reported to be most 
active between pH 4.5 to 5.5 and to have temperature optimum ranging from 25 to 40°C 
(Simpson and Bonnett, 1992), which means they could be active during yeast 
fermentation at 32ºC and pH 4-6.  
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Figure 7. Yeast fermentation of fresh clover-grass juice.  

This experiment show that fructans in the un-heated juice can be converted to ethanol by 
natural enzymes and yeast (or maby other microorganisms in the non-sterilised medium) 
increasing the ethanol production significantly. The fiber fraction form the pressing 
(which contains the lignocellulosic sugars) can be pretreated together with e.g. wheat 
straw in the biorefinery for maximum utilization of biomass components. Figure 8 shows 
the concept of utilization of straw and an N-fixating crop e.g. clover-grass for ethanol 
production in a biorefinery. 

 
Figure 8. Biorefinery concept for utilization of N-fixating and carbohydrate rich crops. 

The next step in this research would be to examine the pretreatment of clover-grass and 
straw in one step as well as examine co-fermentation of pretreated fibers and fresh 
clover-grass juice.  
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4 Conclusions 
A legume-cereal intercrop like pea-wheat seems to be an optimal cropping strategy in 
relation to the use of N resources, because wheat efficiently exploits soil mineral N 
sources while at the same time fixed N2 from pea enter the cropping system. 

Increase of fertilizer N supply promotes the growth of wheat and results in a decreased 
pea N accumulation and a different proportion of intercrop components possibly 
influencing the conversion requirements. 

Dynamic change of plant species interactions as a response to the actual growing 
conditions is not achieved with sole cropping of one species/cultivar. Furthermore, in the 
pea sole crop situation available soil mineral N reduce N2 fixation and the full potential 
of symbiotic nitrogen fixation is not exploited which is regarded as an overall inefficient 
use of N sources.  

Wet oxidation is an efficient method for fractionating clover, grass, and clover-grass 
mixtures into a convertible solid cellulose fraction and a soluble hemicellulose fraction. 

The highest yield of fermentable sugars after enzymatic hydrolysis is achieved in clover-
grass (mixed 1:1) pretreated at 195ºC for 10 minutes using 12 bar oxygen. 

The optimum pretreatment conditions for clover, grass, and clover-grass mixtures is not 
significantly different from that of wheat, which indicates that wheat straw and clover-
grass (from intercropping) could be pretreated in one step. 

The produced sugars were converted into ethanol by Mucor indicus giving good ethanol 
yields YE/TS,Aerobic = 0.37 and YE/TS,oxygen limited = 0.41. 

Fructans from unheated clover-grass juice can be co-converted into ethanol by natural 
enzymes and yeast increasing the ethanol production significantly. 
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